
Research on

Cryptographic Backdoors

Bancha Upanan

Student ID: 1604026

Supervisor: Dr. David Galindo

Submitted in conformity with the requirements
for the degree of MSc Cyber Security

School of Computer Science

University of Birmingham

September 2016

Abstract

Cryptographic backdoors are the field of surreptitiously weakening cryptographic

systems such as deliberately inserting vulnerabilities to a pseudorandom number gen-

erator to make cryptanalysis easier. Therefore, the subsequent random numbers are

predictable to the designer of backdoor. In this project we studied Dual EC DRBG

which is the algorithm based on elliptic curve cryptography to generate random

bits. It has been suspected that the designer could have chosen the parameters

with backdoor in order to predict the random bits. The aims of this project are

to realise how Dual EC DRBG and its corresponding backdoor work consisting of

basic Dual EC DRBG, Dual EC DRBG version 2006 and 2007 according to NIST

SP 800-90A. After that the attack was carried out on TLS by inserting the backdoor

to OpenSSL to learn an ECDHE server private key and reproduce a TLS premaster

secret. The implementation results show that all SageMath programs predicted the

correct random bits. While the Python attack programs against TLS on OpenSSL

successfully output the premaster secret file which could be used to decrypt data on

Wireshark.

Keywords: Dual EC DRBG, cryptographic backdoor, NIST SP 800-90A, TLS

handshake, premaster secret

Acknowledgements

First of all, I would like to express my sincere gratitude and appreciation to my

supervisor Dr. David Galindo for his immense guidance and assistance during the

course of this project. It would not have been possible to finish the project without

his constant support.

I also thanks to my family and friends who always support and encourage me.

Finally, I owe special thanks to the Bank of Thailand for their generous scholarship

all the way to complete the degree of MSc Cyber Security.

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Threat Model and Terminology . 1

1.2 Motivation . 2

1.3 Contribution of the project . 2

1.4 Related work . 3

1.5 Project Outline . 3

2 Further background material 5

2.1 Elliptic curve cryptography . 5

2.2 TLS handshake protocol . 8

3 Analysis and Specification 10

3.1 Dual EC DRBG specification . 10

3.2 Dual EC DRBG algorithms and backdoor 12

3.3 Use of Dual EC DRBG . 16

4 Design 21

4.1 SageMath programs . 21

4.2 TLS attack on OpenSSL . 22

5 Implementation and testing 27

5.1 SageMath programs . 27

5.2 TLS attack on OpenSSL . 33

6 Project management 43

iv

Contents v

7 Results and evaluation 44

7.1 SageMath program results . 44

7.2 TLS attack on OpenSSL results . 47

7.3 Evaluation . 48

8 Discussion 50

8.1 Future Work . 51

8.2 Countermeasures . 51

9 Conclusion 52

Bibliography 53

Appendix 55

A SVN project repository 55

Chapter 1

Introduction

Cryptographic backdoors mean secretly subverting cryptographic systems so that

the encrypted message is more susceptible to cryptanalysis [1]. For example if the

pseudorandom number generator contains a backdoor then the random number can

be guessed by the attacker. This circumstance is concerned as a critical security

risk because almost every modern cryptography algorithm relies on the use of ran-

dom numbers to encrypt messages. For this reason, this project focuses on the

pseudorandom number generator backdoor existing in Dual EC DRBG.

Dual EC DRBG (Dual Elliptic Curve Deterministic Random Bit Generator) is

an algorithm that implements a cryptographic pseudorandom number generator used

to generate a random bit stream based on the mathematics of the elliptic curve

discrete logarithm problem [3]. However, it was publicly identified the potential

of the backdoor belongs to the designer, the United States government’s National

Security Agency (NSA), before the algorithm endorsed by the ANSI, ISO, and the

National Institute of Standards and Technology (NIST). In 2013, The New York

Times reported that the backdoor had been deliberately inserted by the NSA as

part of the NSA’s Bullrun project. In December 2013, Reuters also reported that

NSA paid RSA Security $10 million in a secret deal to use Dual EC DRBG as the

default in the RSA BSAFE cryptography library.

1.1 Threat Model and Terminology

The threat model and terminology of Dual EC DRBG more can be defined as in the

following table.

1

1.2. Motivation 2

Party Description

Attacker Adds weakness to cryptosystem and/or exploits

weakness to attack users

Victims Users of the weakened cryptosystem

Defenders Finds or prevents weakness of cryposystem

Table 1.1: Terminology [1]

The attacker of Dual EC DRBG is the designer who chooses elliptic curve points

that parameterize the algorithm, NSA. As will explain later, someone who picks

these points can create a trapdoor that enables predicting future outputs of the

generator given one block of output. Victims are users who use the software relying

on Dual EC DRBG for example RSA BSAFE, Windows Schannel and OpenSSL

FIPS users. Defenders are those responsible for finding or preventing weakness in

the targeted cryptosystem such as NIST and researchers.

1.2 Motivation

In NIST official website [5], the DRBG validation list shows the implementations

that have been validated as conforming to the Deterministic Random Bit Generator

(DRBG) Algorithm, as specified in NIST SP 800-90A (Recommendation for Ran-

dom Number Generation Using Deterministic Random Bit Generators). From 984

validation no., there are 82 implementations that include Dual EC DRBG as their

random bit generator.

For this reason, the main motivation of this project is to understand the crypto-

graphic backdoor deliberately inserted by the NSA to Dual EC DRBG. It is worth-

while to realise a proof of concept of how Dual EC DRBG works and perform attack

on TLS against one of the validated implementations. In this project, OpenSSL was

chosen because of its open source and compliance with the Federal Information

Processing Standard (FIPS) [15].

1.3 Contribution of the project

The main contributions of the project are the detailed analysis and a proof of

Dual EC DRBG backdoor. The SageMath [6] and Python programs were designed

and developed according to the specifications in NIST SP 800-90A with a step by

step documentation. However, it is strongly recommended to use the solution for the

1.4. Related work 3

educational and experimental purpose only. Finally the countermeasures proposed

in this project are useful to protect against mass surveillance via cryptographic

backdoors.

1.4 Related work

Dual EC DRBG has attracted the attention of researchers and its weaknesses in the

cryptographic security of the algorithm were known and publicly criticised.

The paper “On the practical exploitability of Dual EC in TLS implementations”

posted in April 2014 [2] analysed the use of Dual EC DRBG in TLS on OpenSSL

FIPS, Windows Schannel and RSA BSAFE library. Then the attacks were imple-

mented and the actual cost of attacking TLS implementations were evaluated. The

paper commented that Dual EC DRBG backdoor is exploitable by the anyone who

knows the secret backdoor value d and showed how to recover the secret keys.

Moving on to another paper “Dual EC: A Standardized Back Door” updated

in July 2015 [3], the story of Dual EC DRBG is discussed including where random

numbers come from, the history of how Dual EC DRBG was standardised and how

Dual EC DRBG backdoor work. The paper provides mathematical details of basic

Dual EC DRBG and Dual EC DRBG version 2006 and 2007.

Finally, the last paper “A Systematic Analysis of the Juniper Dual EC Incident”

submitted in April 2016 [4] concerns the Juniper Incident that unknown attackers

had added unauthorized code to ScreenOS, the operating system for their NetScreen

VPN routers. The paper reported that the cause of the vulnerability was the re-

placement of the Q parameter in the Dual EC DRBG. This enables an attacker

who knows the discrete log of Q to passively decrypt IKE handshakes and the IPsec

traffic protected with keys derived from those handshakes.

In conclusion, this project is significantly related to the above papers as one part

of our project aims to realise mathematical details of basic Dual EC DRBG and

Dual EC DRBG version 2006 and 2007. While another part performs TLS attack

on OpenSSL FIPS with replacement of the Q parameter method. Besides, the last

paper also gives motivation for further study about the security of IPsec concerning

the pseudorandom number generator.

1.5 Project Outline

The structure of this report and a brief description of each chapter is shown below.

Chapter 2: Further background material. In this chapter, the required knowledge

1.5. Project Outline 4

to understand Dual EC DRBG and its implementation is explained including elliptic

curve cryptography and TLS handshake protocol.

Chapter 3: Analysis and Specification. The problem and specification of the

solution will be analysed in details followed by investigating use of Dual EC DRBG

in products.

Chapter 4: Design. The high-level designs of SageMath programs and TLS attack

on OpenSSL will be discussed including the main design decisions and program flow.

Chapter 5: Implementation and testing. From the designs in chapter 4, they will

be implemented on SageMath and Python programs. However, only the main func-

tions and relevant algorithms are explained. In the latter section testing methods

and strategies will be demonstrated.

Chapter 6: Project management. This chapter will give overall activities of the

project as well as the methods used to manage the project.

Chapter 7: Results and evaluation. After the programs was implemented and

tested, the results will be presented in the form of screenshots and outputs from Sage-

Math and Python programs followed by the Wireshark decrypted message. Next

they will be evaluated and commented in the aspect of both the product and process.

Chapter 8: Discussion. This chapter will discuss the achievements of the project

as well as the deficiencies and inadequacies of the work. After that the future work

and the countermeasures against Dual EC DRBG backdoor will also be introduced.

Chapter 9: Conclusion. A brief statement of how the SageMath programs realise

Dual EC DRBG and its backdoor will be given. Then the summary of the TLS

attack on OpenSSL will be provided an evaluative statement based on the results.

Chapter 2

Further background material

In this chapter, the foundation for Dual EC DRBG will be laid by introducing

elliptic curve cryptography. After that the TLS handshake protocol will be briefly

explained for better understanding of the implementation.

2.1 Elliptic curve cryptography

Elliptical curve cryptography (ECC) is an alternative approach for implementing

public key cryptography based on elliptic curve theory over finite fields [7]. It can

be used to create faster, smaller, and more efficient cryptographic keys because ECC

generates keys through the properties of the elliptic curve equation instead of the

traditional method of generation as the product of very large prime numbers [8].

It can be used with other public key encryption algorithms for example RSA and

Diffie-Hellman.

Symmetric RSA and Diffie-Hellman Ellictic Curve

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 521

Table 2.1: NIST Recommended Key Sizes (bits) [9]

According to Table 2.1, ECC with a 160-bit key can yield the same level of secu-

rity as RSA and Diffie-Hellman with a 1,024-bit key [9]. For this reason, ECC helps

to establish equivalent security with lower computing power and battery resource

usage, it is becoming widely used for mobile applications [8].

5

2.1. Elliptic curve cryptography 6

2.1.1 Elliptic curves

Elliptic curve cryptography is based on the difficulty of solving number problems

involving elliptic curves. It can be regarded as curves given by equations of the form

y2 = x3 + ax+ b, (2.1.1)

where a and b are constants. The graphs below show all the points with coordinates

(x, y), where x and y satisfy an equation of the form shown above [10].

Figure 2.1: Elliptic curves [10]

In addition, we need that 4a3+27b2 6= 0 to qualify as an elliptic curve and ensure

that the curve has no singular points [10].

2.1.2 Adding points

Given an elliptic curve, the addition of two points can be shown as the following

example [10]. Considering the elliptic curve

y2 = x3 − 4x+ 1,

and two points A = (2, 1) and B = (−2,−1) on it. To find A+B on the curve, join

up points A and B with a straight line. This line generally intersects the curve in

one more place, C. Then reflect point C in the x-axis, C ′.

2.1. Elliptic curve cryptography 7

Figure 2.2: Point addition [10]

This new point, C ′, is the sum of A and B.

A+B = C ′

(2, 1) + (−2,−1) = (1/4,−1/8)

In case of B = A then A + A = 2A, the tangent to the curve at the point A is

considered instead. Considering another elliptic curve

y2 = x3 − 12x.

and point A = (−2, 4). The tangent to the curve at A intersects the curve at a

second point C = (4, 4) which reflects in the x- axis at C ′ = (4,−4). Therefore

2A = C ′, or 2(−2, 4) = (4,−4).

Figure 2.3: Same point addition [10]

2.2. TLS handshake protocol 8

Therefore, its now possible to define nA for any point A on the curve and any

natural number n > 0 :

2A = A+ A,

3A = 2A+ A,

4A = 3A+ A

2.2 TLS handshake protocol

Figure 2.4: TLS Protocol [11]

The Transport Layer Security (TLS) includes handshake and record protocol as in

figure 2.4. The handshake protocol is responsible for the authentication and key

exchange necessary to establish or resume secure sessions. It manages cipher suite

negotiation, authentication of the server and optionally the client session key in-

formation exchange. While record protocol secures application data using the keys

created during the handshake protocol [12].

Cipher Suite Negotiation

The client and server agree the cipher suite that will be used throughout the session.

Authentication

The server proves its identity to the client using public/private key pairs or vice

versa. The method used for authentication is determined by the cipher suite nego-

tiated.

2.2. TLS handshake protocol 9

Key Exchange

The client and server exchange random numbers and a special number called the

pre-master secret. These numbers are combined with additional data to create the

master secret. The master secret is used by client and server to generate the write

MAC secret, which is the session key used for hashing, and the write key, which is

the session key used for encryption [12].

Establishing a Secure Session by Using TLS

The handshake protocol involves the following steps [12]:

1. The client sends a ”Client Hello” message to the server, along with the client’s

random value and supported cipher suites.

2. The server responds by sending a ”Server Hello” message to the client, along

with the server’s random value.

3. The server sends its certificate to the client for authentication and may request

a certificate from the client. The server sends the ”Server Hello Done” message.

4. If the server has requested a certificate from the client, the client sends it.

5. The client creates a random pre-master secret and encrypts it with the public

key from the server’s certificate, sending the encrypted pre-master secret to

the server.

6. The server receives the pre-master secret. The server and client each generate

the master secret and session keys based on the pre-master secret.

7. The client sends ”Change Cipher Spec” notification to server to indicate that

the client will start using the new session keys for hashing and encrypting

messages. Client also sends ”Client Finished” message.

8. Server receives ”Change Cipher Spec” and switches its record layer security

state to symmetric encryption using the session keys. Server sends ”Server

Finished” message to the client.

9. Client and server can now exchange application data over the secured channel

they have established. All messages sent from client to server and from server

to client are encrypted using session key.

Chapter 3

Analysis and Specification

In this chapter, the specifications of Dual EC DRBG from NIST Special Publica-

tion 800-90A January 2012 (NIST SP 800-90A) [13] used in this project will be

shown. The algorithms and problems behind each version of Dual EC DRBG will

be analysed in details followed by investigating use of Dual EC DRBG in products.

3.1 Dual EC DRBG specification

As mentioned before, Dual EC DRBG is an algorithm based on elliptic curve cryp-

tography to generate a random bit stream designed by NSA [13]. Its security relies

on the mathematics of the elliptic curve discrete logarithm problem (ECDLP) where

given points P and Q on an elliptic curve of order n, finding a such that Q = aP is

hard. It was standardised in NIST SP 800-90A, ANSI X9.82 and ISO 18031.

Figure 3.1: Dual EC DRBG [13]

Notation:

x(A) is the x-coordinate of the point A on the curve given in affine coordinates.

ϕ(x) maps field elements to non-negative integers.

10

3.1. Dual EC DRBG specification 11

* is the symbol representing scalar multiplication of a point on the curve.

NIST SP 800-90A provides the specifications of an elliptic curve and two points

P and Q on the elliptic curve for Dual EC DRBG as in figure 3.1. To ensure the

desired security strength and certification under the Federal Information Process-

ing Standard (FIPS) Publication 140, applications must use an appropriate elliptic

curve and points on one of the NIST approved curves including Curve P-256, Curve

P-384 and Curve P-521. In this project, Curve P-256 is used with associated points

and constants as follows [13].

The NIST approved curves is given by the equation:

y2 = x3 − 3x+ b (mod p) (3.1.1)

Notation:

p - Order of the field Fp , given in decimal

n - Order of the Elliptic Curve Group, in decimal

a - (-3) in the above equation

b - Coefficient above

The x and y coordinates of the base point, i.e., generator G, are the same as for the

point P .

Curve P-256

p = 11579208921035624876269744694940757353008614\
3415290314195533631308867097853951

n = 11579208921035624876269744694940757352999695\
5224135760342422259061068512044369

b = 5ac635d8 aa3a93e7 b3ebbd55 769886bc\
651d06b0 cc53b0f6 3bce3c3e 27d2604b

Px = 6b17d1f2 e12c4247 f8bce6e5 63a440f2\
77037d81 2deb33a0 f4a13945 d898c296

Py = 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16\
2bce3357 6b315ece cbb64068 37bf51f5

3.2. Dual EC DRBG algorithms and backdoor 12

Qx = c97445f4 5cdef9f0 d3e05e1e 585fc297\
235b82b5 be8ff3ef ca67c598 52018192

Qy = b28ef557 ba31dfcb dd21ac46 e2a91e3c\
304f44cb 87058ada 2cb81515 1e610046

3.2 Dual EC DRBG algorithms and backdoor

In this section the mathematical algorithms of Dual EC DRBG including general

schematic, basic Dual EC DRBG, Dual EC DRBG version 2006 and 2007 according

to NIST SP 800-90A with their relevant state-based diagrams will be described

followed by how the corresponding backdoor in each version works [3].

3.2.1 State-based PRNG

Figure 3.2: General schematic of a state-based PRNG with functions f and g [3]

To understand how Dual EC DRBG works, it is important to realise a general

schematic of a state-based pseudorandom number generator (PRNG) [3].

From figure 3.2, an internal state si maintained in the PRNG begins with the

initial state s0 which is initialised from an entropy source. When some random bits

are requested from the PRNG, the internal state is updated from the initial state s0

to s1 using function f, s1 = f(s0). After that the PRNG compute the output random

bits r1 using another function g, r1 = g(s1). If more random bits are requested, the

internal state s1 is updated again to s2 using function f, s2 = f(s1) and output r2

using function g, r2 = g(s2). Then some bits of r2 are appended to r1. The process

is continued repeatedly until a certain number of requested random bits is satisfied.

It can be seen that the knowledge of an internal state si can be used to compute

the following states si+1, si+2, ... and finally all output ri, ri+1, ri+2, For this

reason, a state-based pseudorandom number generator (PRNG) is secure as long

3.2. Dual EC DRBG algorithms and backdoor 13

as the internal state is kept secret and cannot be derived from any output. Hence,

function g must be a one-way function without a backdoor so that the attacker are

not able to compute the internal state of the PRNG from the output [3].

3.2.2 Basic Dual EC DRBG

Figure 3.3: Basic Dual EC DRBG algorithm without additional input [3]

The basic DUAL EC DRBG algorithm follows the the general schematic of a state-

based PRNG in the previous section. The algorithm uses points P and Q on the

standard NIST P-256 elliptic curve which the internal state is a 256-bit integer si.

From figure 3.3, the internal state is updated from the initial state s0 to s1 using

function f , f(s0) = s1 = x(s0P), which is the x-coordinate of the s0th multiple of

P on an elliptic curve. Then random bits r1 is derived using function g, g(s1) =

r1 = x(s1Q), which is the x-coordinate of the s1th multiple of Q on an elliptic

curve. Finally, the most significant 16 bits of r1 are discarded and outputs 30-byte

random bits. In case of more than 30 bytes are required, the process will repeat and

concatenate the output bits like r2 and r3 [3].

3.2.3 Basic Dual EC DRBG backdoor

The backdoor is the knowledge of a random secret integer d by the attacker who

controls the initialisation of points P and Q such that P = dQ or Q = eP where

d = e−1(mod n) and n is the order of P [2]. If the random output r1 in figure

3.3 is known by the attacker, for example from a public nonce, he can recompute

point R = (xr1 , yr1) = s1Q. A 32-byte x-coordinate xr1 is obtained by concatenating

216 possibilities of the discarded most significant 2 bytes with 30 bytes of r1. The

corresponding 32-byte y-coordinate yr1 is computed by assigning xr1 to equation 1.

After that dR = ds1Q = s1dQ = s1P can be derived to obtain the candidates of

internal state s2 = x(s1P). If the random output r2 is also known by the attacker,

3.2. Dual EC DRBG algorithms and backdoor 14

he can find the correct internal state by predicting the next random output bits

using each candidate and comparing with r2. Therefore, the attacker learns the

next internal state and can reproduce all the following output [3].

3.2.4 Dual EC DRBG version 2006

Figure 3.4: Dual EC DRBG algorithm version 2006 with additional input [3]

In the June 2006 release of NIST SP 800-90A, the internal state of DUAL EC DRBG

can be refreshed with some high-entropy additional input [3]. From figure 3.4 the

initial state s0 is bitwise xor’ed with the hash of additional input adin0 using one

of the appropriate hash functions specified in NIST SP 800-90A to get the seedlen-

bit unsigned integer t0. This intermediate value is used to multiply with point P

and derive the next internal state s1. Finally the random bits r1 is computed from

r1 = x(s1Q) while the most significant 2 bytes are discarded.

In case of more than 30 bytes of random bits are requested, the current internal

state s1 is again refreshed by being bitwise xor’ed with the hash of next additional

input adin1 to obtain t1, s2 and r2 as the previous steps. To compute the next 30

bytes of random bits, the next internal state s3 can be directly determined from s2,

s3 = x(s2P) and so on until the output random bits satisfy the number of bytes

requested.

3.2.5 Dual EC DRBG version 2006 backdoor

It can be seen that even though the attacker observes r1, he can no longer use the

backdoor computation as described before to work out the next internal state s2 [3].

However, if more than 30 bytes of random bits are requested and the attacker knows

the random output r2 and r3, he can recompute point R = (xr2 , yr2) = s2Q. After

that dR = ds2Q = s2dQ = s2P can be derived to obtain the candidates of internal

3.2. Dual EC DRBG algorithms and backdoor 15

state s3 = x(s2P). Then he can find the correct internal state by predicting the

next random output bits using each candidate and comparing with r3.

Therefore, the additional input does not only limit the backdoor but also slow

down the attacker because even the attacker can find out the internal state s3, he

still need to guess the high entropy additional input adin3 to predict the following

random output [3].

3.2.6 Dual EC DRBG version 2007

Figure 3.5: Dual EC DRBG algorithm version 2007 with additional input [3]

In March 2007, NIST SP 800-90A was revised to require an additional update of

the internal state at the end of each random bit invocation [3]. From figure 3.5,

the internal state s1 is updated into the next internal state s2, s2 = x(s1P), after

being used to generate the random bits r1, r1 = x(s1Q). The reason for this revision

was to provide “backtracking resistance” or “forward secrecy” where the attacker

will not be able to recompute earlier random numbers. The attacker who knows

the current state cannot recompute the current random output because the internal

state has already been updated, s1 is replaced with s2.

3.2.7 Dual EC DRBG version 2007 backdoor

Because of the additional update of the internal state, the attacker who only has 30

bytes of random bits can have the knowledge of the internal state. Given r1, point

R can be derived as R = (xr1 , yr1) = s1Q then dR = ds1Q = s1dQ = s1P and finally

obtains the internal state s2 as s2 = x(s1P). However, like version 2006 the attacker

still need to guess the high entropy additional input adin2 to predict the following

random output [3].

3.3. Use of Dual EC DRBG 16

3.3 Use of Dual EC DRBG

In this section, the example use of Dual EC DRBG in products will be investigated

including RSA BSAFE, Windows Schannel and OpenSSL FIPS Object Module [2].

3.3.1 RSA BSAFE

RSA BSAFE is a FIPS 140-2 validated cryptography toolkits developed by RSA Se-

curity [2]. It offers developers the tools to add privacy and authentication features to

their applications. There are two main families including RSA BSAFE CRYPTO-C

and RSA BSAFE CRYPTO-Java. From the RSA Product Version Life Cycle web-

site [14] RSA is no longer taking on new customers for RSA BSAFE and its Extended

Opportunity Programs and Services (EOPS) will end in January 2017. However, it

is still worthwhile to study RSA BSAFE because it enabled Dual EC DRBG as a

default DRBG from 2004 to 2013 [2].

To begin with RSA BSAFE CRYPTO-C version 1.1, it does not support elliptic

curve cryptography so that its preferred cipher suites are TLS DHE DSS WITH AES

128 CBC SHA and TLS DHE RSA WITH AES 128 CBC SHA. During TLS hand-

shake, it generates a 32-byte session ID, a 28-byte server random, a 20-byte ephemeral

Diffie-Hellman (DH) secret key and a 20-byte nonce when using DSA respectively.

The DH parameters and the server’s public key are signed with the server’s RSA

or DSA certificate and the session ID, server random, public key, and signature are

sent in a Server Hello message to the client [2].

While RSA BSAFE-Java version 1.1 already supports elliptic curve cryptography

and uses the cipher suite TLS ECDHE ECDSA WITH AES 128 GCM SHA256.

The values generated by Dual EC DRBG in this cases are a 28-byte server ran-

dom, a 32-byte ECDHE secret key and a 32-byte ECDSA nonce in order [2].

Because both RSA BSAFE neither cache unused output bytes nor refresh the

internal state with additional input by default, a passive network attacker can easily

use the basic backdoor attack as explained in the previous section to recover the

internal state. Then he can reproduce all the following random output such as DHE

or ECDHE secret key, DSA or ECDSA nonce and finally recompute the session keys

and the server’s long-lived DSA secret key [2].

3.3.2 Windows Schannel

Secure Channel or Schannel is a security component comprising a set of security

protocols that provide identity authentication and secure, private communication

3.3. Use of Dual EC DRBG 17

through encryption. Schannel is available in the Windows operating system since

Windows 2000 and most commonly used for TLS on Microsoft’s Internet Information

Services (IIS) server and Internet Explorer (IE). It uses Microsoft’s FIPS 140-2

validated Cryptograpy Next Generation (CNG) API which includes Dual EC DRBG

as one of algorithm identifiers. Dual EC DRBG is distributed with Windows Vista,

7 and 8, Windows Server 2008 and 2012, though it is not enabled by default [2].

Figure 3.6: BCryptGenRandom function

Figure 3.7: Windows random number generator registry

To use Dual EC DRBG as a pseudorandom number generator, an application

calls the BCryptGenRandom function included in schannel.dll and specifies the

pszAlgId attribute of the hAlgorithm parameter with BCRYPT RNG DUAL EC

ALGORITHM value [2]. Otherwise, Dual EC DRBG can be set to default using

Windows Registry Editor in the \HKEY LOCAL MACHINE\SYSTEM\Current

ControlSet\Control\Cryptography\Configuration\Local\Default\00000006 path as

in figure 3.7 and reordering the list of algorithms in the Functions registry. It can

be seen that DUALECRNG is the least preference pseudorandom generator by de-

3.3. Use of Dual EC DRBG 18

fault while RNG is the random number generator based on the AES counter mode

specified in the NIST SP 800-90 standard [13].

Figure 3.8: Reverse engineering of bcryptprimitives.dll

When Schannel performs an ECDHE in TLS handshake, it requests random

bytes from the BCryptGenRandom function in a different order than RSA BSAFE:

a 32-byte session ID, a 40-byte ephemeral private key, a 32-byte irrelevant random,

a 28-byte ServerHello nonce, and a 32-byte signature for ECDSA [2]. When we

performed reverse engineering bcryptprimitives.dll as in figure 3.8, it was found

that Dual EC DRBG does not refresh the internal state with additional input and

point Q from NIST SP 800-90A is located from offset 0003F390 to 0003F3C0. It

can be replaced by a custom point Q using the hex editor tool. Furthermore, the

study of function called MSCryptDualECGen [2] indicates that bcryptprimitives.dll

implements Dual EC DRBG with the final update step at the end of each call but the

result does not replace the internal state appearing to perform like Dual EC DRBG

version 2006 by ignoring the result of the final update step. Besides, a 32-bit session

ID of Schannel is different from RSA BSAFE because it replaces the first four byte

with the fingerprint v′ = v mod CACHE LEN, where v is an unsigned integer of the

original first four byte and CACHE LEN is fixed at 20,000 [2].

For this reason, the basic attack can be performed using the server random in

the previous handshake or the session ID in a current handshake message to recover

the ECDHE private key. However, it is necessary to recompute the first four bytes

which are substituted with the fingerprint. The result can be checked by generating

the next 40 bytes of a private key, computing the corresponding public key and

comparing against the value in the ServerKeyExchange message [2].

3.3. Use of Dual EC DRBG 19

3.3.3 OpenSSL FIPS Object Module

From OpenSSL FIPS Object Module v2.0 User Guide [15], OpenSSL FIPS Object

Module is a software component intended for use with the OpenSSL cryptographic

library and toolkit. The FIPS Object Module provides an API for invocation of

FIPS approved cryptographic functions from calling applications, and is designed

for use in conjunction with standard OpenSSL 1.0.1 and 1.0.2 distributions. In this

project the OpenSSL FIPS Object Module version 2.0.5 and OpenSSL 1.0.1e are

used in the implementation section.

Figure 3.9: RAND set fips drbg type function in rand lib.c

Dual EC DRBG is one of the pseudorandom number generators provided in the

FIPS Object Module 2.0 until version 2.0.5. Even though it is not the default

PRNG, it can be manually enabled through an API call at run time using the

RAND set fips drbg type function in rand lib.c or specify to OPENSSL DRBG

DEFAULT TYPE macro at installation time as in figure 3.9 to override the default

OpenSSL PRNG, NID aes 256 ctr (256-bit AES encryption with counter mode) [15].

Figure 3.10: TLS on OpenSSL [2]

3.3. Use of Dual EC DRBG 20

The OpenSSL version 1.0.1.e used in this project supports TLS 1.2 and ECDHE

key exchange with either RSA or ECDSA signatures. It follows the standard ECDHE

based on NIST SP 800-90A, as in figure 3.10 it generates a 32-byte session ID, a 28-

byte server random, a 32-byte ECDHE ephemeral private key, and optionally a 32-

byte ECDSA nonce respectively. In addition, it can be seen that the implemetaion

of Dual EC DRBG in OpenSSL does not cache unused random bytes but it refreshes

the internal states with additional input. The additional input string is constructed

from time in seconds, time in microseconds, counter and process id [2].

adin = (time in secs || time in µsecs || counter || pid) (3.3.2)

Each of them is 4 bytes in length resulting 16-byte additional input string. The

time fields are obtained from the system time while the counter starts at 0 and

increments with each call and finally the pid is the process id of OpenSSL running.

The hash of additional input is computed using the appropriate hash function and

bitwise xor’ed with the internal state.

The attacker who observes a 32-byte session ID in a Server Hello message during

TLS handshake can perform the basic attack to recover the internal state s2. After

that he has to update the internal state to s3 as specified in Dual EC DRBG version

2007, guesses the additional input adin2, reproduce a server random and so on until

he obtains an ECDHE private key [2].

Chapter 4

Design

In this chapter, the high-level designs of SageMath [6] programs and TLS attack on

OpenSSL will be discussed including the main design decisions and program flow.

4.1 SageMath programs

The designs in SageMath programs are based on NIST SP 800-90A specifications

and the diagrams from figure 3.3 to 3.5 including 6 programs as follows.

4.1.1 Basic Dual EC DRBG

This SageMath program is designed to realise the basic Dual EC DRBG algorithm

in figure 3.3 in Python code and generate random bits without additional input

using points P and Q on the standard NIST P-256 elliptic curve.

4.1.2 Basic Dual EC DRBG backdoor

Since the secret backdoor value of the standard Dual EC DRBG is only known by

the designer, NSA. This program is developed to create a custom Dual EC DRBG

backdoor using the secret backdoor value d to recompute point Q and insert it to

the basic Dual EC DRBG algorithm in the previous section instead of the standard

one while point P is still the standard one.

4.1.3 Dual EC DRBG version 2006

This program realises DUAL EC DRBG version 2006 in figure 3.4 of which the

internal state is refreshed with some high-entropy additional input when the random

21

4.2. TLS attack on OpenSSL 22

bits are requested. In general the functions in this program are similar to the basic

Dual EC DRBG program except the additional input generator function.

4.1.4 Dual EC DRBG version 2006 backdoor

The secret backdoor value d and recomputed point Q from basic Dual EC DRBG

backdoor are used in this program while point P is still standard. However, to

compute the following random bits after the internal state is known, it is necessary

to predict the next additional input. The time in seconds is usually transmitted as

part of the server random but time in microseconds, counter and process id can range

from 220, 210 and 215 respectively. In total there are approximately 245 possibilities

of additional input. Once the correct additional input is recovered, the following

additional input can be guessed within 220 attempts since counter is increased by 1

and process id is the same. The demonstration of additional input prediction will

be shown in the implementation on OpenSSL FIPS.

4.1.5 Dual EC DRBG version 2007

This program realises DUAL EC DRBG version 2007 in figure 3.5 of which the

internal state is refreshed with some high-entropy additional input when the random

bits are requested and additional update step of the internal state at the end of

each invocation. In general the functions in this program are similar to the basic

Dual EC DRBG and Dual EC DRBG version 2006 program except the additional

update step.

4.1.6 Dual EC DRBG version 2007 backdoor

In addition to Dual EC DRBG version 2006, the secret backdoor value d and recom-

puted point Q from basic Dual EC DRBG backdoor are also used in this program

while point P is still the same. The functions in this program are generally utilised

from Dual EC DRBG version 2006 backdoor program.

4.2 TLS attack on OpenSSL

The software system to be developed in this part has the capability of analysing the

captured network packets during TLS handshake between the compromised server

and a normal client which are produced by a network sniffer software like tcpdump

or Wireshark. The application is able to perform Dual EC DRBG computation

4.2. TLS attack on OpenSSL 23

with a given secret backdoor value such as elliptic curve point multiplication and

polynomial equation calculation while communicating to the underline OpenSSL

libraries to perform primitive cryptographic operation in order to recover the internal

state, additional input and predict the following random output bits. Finally, it

outputs the required secret values including an ECDHE server private key and a

TLS pre-master secret in a proper format to decrypt captured TLS packets.

Figure 4.1: System overview

The system overview in figure 4.1 shows the necessary components in this im-

plementation including the server, the client and the attacker. The server is a web

hosting to provide HTTPS service on port 443 for the client. The client initiates a

connection to the server using its web browser. OpenSSL is needed on the server

to provide cryptographic functions to establish a secure TLS connection with the

client using ECDHE key exchange for example. In order to use Dual EC DRBG,

OpenSSL FIPS is required and Dual EC DRBG also has to be enabled. In this

project both TLS with RSA key transport and TLS with ECDHE exchange and

ECDSA signature (P-256) are implemented. Hence, the certificate for each protocol

is generated on the server using the relevant key file. Finally, the attacker who

passively eavesdrops the connection between the server and the client can monitor

and capture the TLS packets and later perform the cryptanalysis against the TLS

protocol. To achieve the attack, he only needs Wireshark, SageMath and Python

package installed to run the attack scripts.

4.2. TLS attack on OpenSSL 24

Figure 4.2: Software architecture

This system software is designed with layered design pattern by splitting into 4

layers namely OpenSSL, C, Python and Wireshark as in figure 4.2. The details of

each layer are as follow.

4.2.1 OpenSSL layer

The first layer concerns the underline OpenSSL libralies including libcrypto.a and

libssl.a which are created once OpenSSL is installed. These libraries significantly

involve in TLS communication and also can create a TLS server using s server

command. To enable FIPS compliance, OpenSSL FIPS Object Module has to be

installed prior to OpenSSL setup. After FIPS mode is enabled, OpenSSL will use the

protocols provided by OpenSSL FIPS Object Module, fipscanister.o, instead. The

application can then use the FIPS compliance functions including Dual EC DRBG.

For this reason the Dual EC DRBG backdoor previously described can be found in

OpenSSL FIPS Object Module. The next section will show how to verify, insert and

enable the backdoor in OpenSSL FIPS Object Module source code.

4.2.2 C layer

The next layer is designed as a custom C library to interface between the OpenSSL

layer and the upper layer, Python layer. This library operate as a part of attack

script by calling the cryptographic functions provided by OpenSSL, reformatting

and submitting result to the upper layer application.

4.2. TLS attack on OpenSSL 25

4.2.3 Python layer

This layer is the most important part where the Python attack scripts are executed.

The application has the following 5 main functionalities. Firstly, it interfaces with

the upper Wireshark layer, filters and analyses the captured TLS packets to extract

necessary information including a session ID, a timestamp, a server and client ran-

dom and a server and client public key. Secondly, it utilises the OpenSSL functions

to perform cryptographic computation via the lower C layer. Thirdly, it performs

some calculation to guess additional input. Fourthly, it recovers an ECDHE server

private key. Finally, it computes a TLS pre-master secret from a server random and

a server private key and generates the output file in the format that is ready for the

Wireshark layer to decrypt the captured TLS packets.

Figure 4.3: Program flow

The process of how the application works is designed as a program flow in figure

4.3. Each step is explained as follows

• Start - To start executing the attack scripts.

• Generate adin list - To generate the list of possible additional input from

available knowledge of time in seconds, time in microseconds, counter and

process id.

• Get 32-byte Session ID - To read a session ID from a Server Hello message.

• Compute internal state - To recover the internal state from a 32-byte session

ID.

• Predict random - To apply the recovered internal state with each additional

input to generate the corresponding 28-byte server random.

4.2. TLS attack on OpenSSL 26

• Compare server random - To compare the computed server random with the

server random from captured packets. If they are equal, proceed to the next

step. If not, try the next additional input from the list.

• Get current counter, pid - To determine the counter and process id which make

the computed server random match the server random from captured packets.

Then produce the next additional input by incrementing the counter along

with the known process id.

• Predict 32-byte ECDHE priv.key - To generate random bits as a 32-byte

ECDHE private key using the internal state and additional input from the

previous step.

• Compute ECDHE pub.key - To compute the corresponding ECDHE server

public key from server public key = server private key ∗ P .

• Compare server pub.key - To compare the computed server public key with

the server public key from captured packets. If they match, continue to the

next step. If not, go back to the step Predict 32-byte ECDHE priv.key again.

• Compute pre-master secret - To compute a TLS pre-master secret using

pre−master secret = server private key ∗ client public key.

• Export premaster.txt file - To output a TLS pre-master secret in the appro-

priate format for Wireshark.

• End - To stop the attack scripts and continue to the Wireshark layer.

4.2.4 Wireshark layer

The last layer concerns the Wireshark tool itself. Wireshark is a free and open

source packet analyzer. It is used for network troubleshooting, analysis, software

and communications protocol development [16]. In this project, it is used to sniff

and record the TLS communications between the server and client, probably by

the attacker. It is a GUI tool to verify the content for example a session ID and

a server random in a Server Hello message. To allow a Python code to read a

Wireshark packet, the additional pyshark module [17] needs to be installed. The

most facilitative feature in use is decrypting the TLS packets with a client random

and a TLS pre-master secret.

Chapter 5

Implementation and testing

In this chapter, the details of implementation on SageMath programs and TLS attack

on OpenSSL will be explained. Only the main functions and relevant algorithms are

included. The following section will demonstrate testing methods and strategies.

5.1 SageMath programs

5.1.1 Basic Dual EC DRBG

Figure 5.1: Curve P-256 initialisation

In figure 5.1, it shows how to initialise the elliptic curve using the values specified

in NIST SP 800-90A including p, n, a, b in equation 3.1.1 and obtain points P and

Q on the curve using Px, Py,Qx, and Qy given in the standard.

27

5.1. SageMath programs 28

Figure 5.2: Dual EC DRBG random bit generator

The function in figure 5.2 illustrates the generation of random bits from the

internal state si and points P and Q. To begin with, the initial state s0 is chosen

at random and used as the internal state to compute the next internal state by

multiplying with point P which is then multiplied with point Q to derive the random

bits ri. Finally the random bits ri is bitwise AND’ed with the defined bitmask

(230∗8 − 1) to discard the most significant two bytes and output 30 bytes for each

block. In this case there is no additional input and it remains 0, hence, it does

not affect the internal state. Note that (ti ∗ P)[0] means x(ti ∗ P), the x-coordinate

of multiplication between ti and P on the curve P-256. While lift() means ϕ(x),

mapping field elements to non-negative integers, taking the bit vector representation

of a field element and interpreting it as the binary expansion of an integer.

5.1.2 Basic Dual EC DRBG backdoor

Figure 5.3: Custom Dual EC DRBG backdoor

To create a custom Dual EC DRBG backdoor, the secret backdoor value must be

determined. It can be a small number, for example, in figure 5.3 the secret backdoor

value d is chosen at 5. Then either point P or Q specified in NIST SP 800-90A has

to be modified. To compute new point P , it can be done by multiplying the secret

backdoor value d with the standard point Q, while point Q remains the same. On

5.1. SageMath programs 29

the other hand to change point Q, the order of point P has to be derived using the

additive order function. The order is used to computed the multiplicative inverse

of the secret backdoor value e using the inverse mod function. Finally new point

Q can be derived by multiplying the multiplicative inverse of the secret backdoor

value e with point P , while point P remains the same. This new point P or Q is

used instead of the standard point to generate random bits. In this program point

Q are substituted with a new value while point P is still the standard one.

Figure 5.4: Get Internal State function

Once the custom Dual EC DRBG backdoor is in place, the next internal state

can be recovered using the Get Internal State function in figure 5.4. The input of

the function are points P and Q, p and b from the standard, the current random

bit output r and the secret backdoor value d. As described in the previous section,

the first 30 bytes of random bits are the least significant part of x value in equation

1. To guess the candidate of x, x cand, it has to loop through all 216 possibilities

of the missing 2 bytes. The corresponding y value, y cand, is then derived using

each x cand. After that the pair of x cand and y cand is verified whether it is a

valid coordinate on the standard curve. If so, this pair of x cand and y cand will

represent point R which is then multiplied with the secret backdoor value d to get

the candidate of internal state s cand. The possible s cands are scoped down by

multiplying themselves with point Q to generate the random bits which then are

compared with the rest of current random bit output r. If they are related, the

function will output that s cand which is later used as the internal state to predict

all the following random bits.

5.1. SageMath programs 30

5.1.3 Dual EC DRBG version 2006

Figure 5.5: Get H Adin function

From the implementation of Dual EC DRBG in OpenSSL FIPS Object Module 2.0,

the high-entropy additional input string can be constructed from time in seconds,

time in microseconds, counter and process id as in equation 3.3.2. In Python, time

in seconds is obtained using datetime.now().second function which returns the Unix

epoch time. The Unix epoch time is the number of seconds that have elapsed since

January 1, 1970 for example 1472391621 at the time this report is written. While

time in microseconds can be retrieved using datetime.now().microsecond function.

It varies from 0 to 999,999. Counter is the internal number that the pseudoran-

dom generator starts at 0 and increments each time random bits are requested.

Finally os.getpid() function returns the current process id ranging from 1 to 32768

as specified in /proc/sys/kernel/pid max in most Unix systems. After shifting and

concatenating them into the high-entropy additional input string, a secure SHA-256

hash function from NIST SP 800-90A will digest it to produce a 32-byte bit string

which is later used to refresh the internal state of Dual EC DRBG.

5.1. SageMath programs 31

5.1.4 Dual EC DRBG version 2006 backdoor

Figure 5.6: Predict Next function version 2006 with additional input

In this program, the hash of additional input is passed to the Predict Next function.

The hash of predicted additional input is then bitwise xor’ed with the candidate of

internal state s cand at the start of each invocation. As in figure 5.6 the candidate

of internal state s cand is multiplied with point P to get the next state which is then

multiplied with point Q to generate random bits r cand. As explained before, the

most significant 2 bytes of random bits are discarded by bitwise AND’ing with the

defined bitmask. The result is concatenated with the previous one until the number

of random bytes satisfy the request as specified in byte parameter.

5.1.5 Dual EC DRBG version 2007

Figure 5.7: Random Generator function with additional update step

5.1. SageMath programs 32

When the random bits are requested using the Random Generator function in figure

5.7, only the first block of random output bits of each invocation involves the addi-

tional input. After the result meets the required bytes, the internal state is updated

one more time by multiplying itself with point P .

5.1.6 Dual EC DRBG version 2007 backdoor

Figure 5.8: Predict Next function version 2007 with additional input

In this program the additional input is also assumed to be already known and its hash

value is passed to the Predict Next function. However, before the hash of predicted

additional input is bitwise xor’ed with the candidate of internal state s cand, it is

necessary that the candidate of internal state s cand has to be multiplied with point

P to update the state one more time. Then the steps as of Dual EC DRBG version

2006 backdoor can continue until the prediction process finishes.

5.1.7 SageMath programs testing

There are two main methods to test and verify SageMath programs, the online and

offline version. To test the programs online, all SageMath programs are available at

https://cloud.sagemath.com/projects/8b1cb781-32cb-4eec-9afa-2a4c000bc303/files/

Code/. The backdoor secret value d = 5 can be adjusted and the programs can be

simply run. The result will be shown at the bottom of the code as shown in the Re-

sults and evaluation chapter. While the offline version programs are also submitted

with this dissertation. They can be copied to the machine with SageMath installed

and executed by the sage command for example sage Dual EC DRBG basic.sagews

5.2. TLS attack on OpenSSL 33

5.2 TLS attack on OpenSSL

In this part, the program explained in the design section will be broken down in

greater detail with the explanation of some important pieces of code.

5.2.1 OpenSSL layer

From the OpenSSL layer design, the implementation can be grouped into 4 main

tasks.

Figure 5.9: Custom Dual EC DRBG backdoor

Insert a custom Dual EC DRBG backdoor

• Download OpenSSL FIPS Object Module version 2.0.5.

wget http://www.openssl.org/source/openssl-fips-2.0.5.tar.gz

• Extract the downloaded file.

tar -xzvf openssl-fips-2.0.5.tar.gz

• Edit Dual EC DRBG source code.

nano openssl-fips-2.0.5/fips/rand/fips drbg ec.c

• Verify Q points from SP 800-90 A.1 in p 256 qx[] and p 256 qy[] variables.

• Replace p 256 qx[] and p 256 qy[] value with the custom Qx and Qy from the

SageMath section as in figure 5.9.

• To fix a known bug of Dual EC DRBG on OpenSSL FIPS Object Module,

insert t = s; after line 330.

Bypass OpenSSL FIPS Object Module validation

• Edit fips drbg selftest.c.

nano openssl-fips-2.0.5/fips/rand/fips drbg selftest.c

5.2. TLS attack on OpenSSL 34

• Insert return 1; after line 201.

Install OpenSSL FIPS Object Module

• Go to OpenSSL FIPS Object Module directory.

cd openssl-fips-2.0.5

• Configure OpenSSL FIPS Object Module.

./config

• Compile OpenSSL FIPS Object Module source code.

make

• Install OpenSSL FIPS Object Module.

sudo make install

Enable a custom Dual EC DRBG backdoor on OpenSSL setup process

• Download OpenSSL FIPS Capable Library version 1.0.1e.

wget http://www.openssl.org/source/openssl-1.0.1e.tar.gz

• Extract the downloaded file.

tar -xzvf openssl-1.0.1e.tar.gz

• Configure OpenSSL with fips option and specify the drbg default type to

0x19f02a0 (Dual EC DRBG).

./config fips shared no-ssl2 -DOPENSSL DRBG DEFAULT TYPE=0x19f02a0

-DOPENSSL DRBG DEFAULT FLAGS=0

-DOPENSSL ALLOW DUAL EC DRBG

• Compile OpenSSL source code.

make all

• Install OpenSSL.

sudo make install

• Move existing OpenSSL.

sudo mv /usr/bin/openssl /usr/bin/openssl orig

• Link new OpenSSL.

sudo ln -s /usr/local/ssl/bin/openssl /usr/bin/openssl

• Append OPENSSL FIPS=1 to /etc/environment.

Set up a TLS server

5.2. TLS attack on OpenSSL 35

• Create a certificate for TLS with RSA key transport.

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout certs/server.key

-out certs/server.crt

• Create a certificate for TLS with ECDHE exchange and ECDSA signature

(P-256).

openssl ecparam -genkey -out certs/eckey.pem -name prime256v1

openssl req -x509 -new -key certs/eckey.pem -out certs/cert.pem

• Create a web page and save as page.html.

• Start a TLS server using RSA key transport on port 443 with no TLS session

ticket option.

openssl s server -key certs/server.key -cert certs/server.crt -accept 443 -WWW

-no ticket

• Or start a TLS server using ECDHE exchange and ECDSA signature (P-256)

on port 443 with no TLS session ticket option.

openssl s server -key certs/eckey.pem -cert certs/cert.pem -accept 443 -WWW

-no ticket

5.2.2 C layer

In the custom C library source code dual ec.c, there are 2 main functions that can

be called by the upper Python layer while interfacing with the lower OpenSSL layer.

These functions accept the input from Python programs, submit to OpenSSL, and

return the output to Python programs in a proper format.

get random function

Figure 5.10: get random function, dual ec.c

5.2. TLS attack on OpenSSL 36

This function calls another custom function init fips to create the OpenSSL

DRBG context object then accepts the internal state and additional input com-

puted from a Python program. Next it executes the OpenSSL’s FIPS drbg generate

standard function passing the OpenSSL DRBG context object, number of required

random bytes and additional input to request OpenSSL random bits using its de-

fault DBRG (Dual EC DRBG). Finally it returns the hex value of next internal

state and the generated random bits.

get adin function

Figure 5.11: get adin function, dual ec.c

Another necessary custom function is the get adin function which is used to

convert the additional input value received from a Python program in the ADIN

structure including the time in seconds tv sec, time in microseconds tv usec, counter

pctr and process id pid into the acceptable format of OpenSSL’s additional input

string. In the end, it outputs additional input in the appropriate format along with

its length.

5.2.3 Python layer

From the specifications and program flow in the design section, the Python program

is divided into 5 functionalities. Some important parts of code and their descriptions

will be explained.

Interfacing with the upper Wireshark layer

5.2. TLS attack on OpenSSL 37

Figure 5.12: Packet analyser, cap.py

The packet analyser program in figure 5.12 shows that the pyshark package is

used. This package allows parsing from a capture file or a live capture, using all

wireshark dissectors [17]. The FileCapture function allows the program to scope the

captured packets with Wireshark display filters for example ssl.handshake.type ==

1 is a Client Hello message, ssl.handshake.type == 2 is a Server Hello message and

ssl.handshake.type == 16 is a Client Key Exchange message. Then the required

information can be extracted by navigating through the packet branches including

• Random time in seconds.

packet.ssl.handshake random time

• Session ID.

packet.ssl.handshake session id

• Server and client random.

packet.ssl.handshake random

• Server public key.

packet.ssl.handshake server point

• Client public key.

packet.ssl.handshake client point

Utilising the OpenSSL functions via the lower C layer

Figure 5.13: C library utilisation, main.py

5.2. TLS attack on OpenSSL 38

To include C library in a Python program, cdll.Loadlibrary is a useful func-

tion. The Python program loads libdual ec.so library and uses the get random and

get adin function explained in the previous part. It is also important to specify the

argument types and return type as in figure 5.13.

Guess additional input

Figure 5.14: Addition input list generation, adin.py

Because OpenSSL FIPS implements Dual EC DRBG version 2007, hence, it is

required to guess the additional input before producing the next random output bits

[3]. From equation 3.3.2, the additional input string consists of time in seconds, time

in microseconds, counter and process id. Time in seconds can always be found in a

Server Hello message while the other values are still need to be guessed. However,

from the experiments in this project, after a TLS server is started the first counter

of TLS handshake is usually 11 and process id is predictable. For the performance

reason, the counter and process id are specified as in figure 5.14. Finally, it calls the

get adin function in C library to reformat and output all possible additional input

string in the adin list file.

Figure 5.15: Guess addition input, main.py

Once the internal state is recovered using the Get Internal State function (the

5.2. TLS attack on OpenSSL 39

same function as in the SageMath programs), each additional string in the adin list

file is submitted along with the internal state to the get random function to generate

the corresponding random bits. This predicted random bits are compared with the

server random from the captured packet. If they are equal, that particular addi-

tional input is the correct one and the internal state is updated to the new state. If

not, try the next additional input in the adin list file.

Recover an ECDHE server private key

Figure 5.16: ECDHE server private key, main.py

After the previous additional input is known, the next additional input is easier

because time in seconds and process id remain the same while counter is increased

by 1 and only time in microseconds have to loop through all possible values again, 0

to 999,999. To generate random bits as a 32-byte ECDHE private key, the internal

state and predicted additional input are sent to the get random function. The right

32-byte ECDHE private key can be checked by comparing the computed ECDHE

server public key, predict pubkey = predict random ∗ P , with the ECDHE server

public key from a Server Hello message.

Compute the TLS pre-master secret and generate the output file

Figure 5.17: TLS pre-master secret, main.py

Before the TLS pre-master secret can be derived, the ECDHE client public key

are splitted into 2 32-byte numbers, the most significant 32-byte Cx and the least

significant 32-byte Cy. Cx and Cy are the coordinates of point C on curve P-256.

5.2. TLS attack on OpenSSL 40

The TLS pre-master secret is the x-coordinate value of the multiplication between

the ECDHE private key and point C. Finally the pre-master secret is written to

a file along with all the client randoms in the format PMS CLIENT RANDOM

CLIENT RANDOM PREMASTER SECRET.

5.2.4 Wireshark layer

Apart from the decryption process, Wireshark is also used on the attacker’s machine

to eavesdrop the TLS communication between the server and the client. To achieve

this step, the monitor mode option on the listening network interface has to be

enabled. The other network configurations are not in the scope of this project.

5.2.5 TLS attack on OpenSSL testing

The following steps are the process to attack TLS on OpenSSL using scripts and

Python programs in this implementation.

Start a TLS server

Figure 5.18: Start a TLS server

In figure 5.18, the server certificates, scripts for starting a TLS server and simple

web page are prepared in the server directory. A TLS server with RSA key trans-

port can be started by executing server ecdsa.sh for TLS with ECDHE exchange

and ECDSA signature (P-256) and server rsa.sh for TLS with RSA key transport.

Start Wireshark in monitor mode on the attacker machine

After enable monitor mode on the capturing interface then click the Start button

waiting for the client establishes the TLS connection to the server. Once packet

capturing finishes, it can be saved as a pcapng file for the next attack.

Browse the server web page from the client

5.2. TLS attack on OpenSSL 41

Figure 5.19: Server web page

The server web page can be accessed via https://<server ip address>/page.html.

Note that there might be a warning message because of the self-signed certificates

on the server.

Verify the captured TLS packets

Figure 5.20: Packet analyser

The captured TLS packets can be checked using the packet analyser program,

cap.py. After executing the command sage -python cap.py, the TLS handshake in-

formation will be displayed such as a random time, a session ID, a server and client

random and a server and client public key.

Execute the main Python program

Figure 5.21: Main Python program execution

To run the main Python program, it only needs to execute run.sh script. The

script will dispatch adin.py and main.py consecutively to produce the pre-master

5.2. TLS attack on OpenSSL 42

secret output file. The example of screenshot result is as figure 5.21.

Decrypt the captured TLS packets

Figure 5.22: Decrypt TLS packets on Wireshark

The captured TLS packets can be decrypted with the specific format of client

random and pre-master secret file as mentioned before. From figure 5.22, Wireshark

allows submitting the (Pre)-Master-Secret log filename through Preferences and SSL

menu.

Chapter 6

Project management

In this chapter, the main activities and management methods in use based on soft-

ware engineering [18] to achieve the project objectives will be shown as follows.

Activity Description Methods

Research Study 5 papers concerning Understand problems

Dual EC DRBG Extensive study

Design Design solution for Requirements analysis

Dual EC DRBG backdoors Layered design pattern

Development Develop SageMath programs Abstraction

Develop C and Python programs Modularity

Testing Insert and enable backdoors Unit testing

Perform TLS attack Integration testing

Presentation Slides creation Data collection

Report Produce dissertation Template utilisation

Table 6.1: Project management

To begin with research, 4 papers [1–4] were studied concerning Dual EC DRBG.

We also needed to do extensive study in elliptic curve cryptography and TLS hand-

shake protocol in chapter 2. In design, the requirements to provide a proof of concept

and attack TLS on OpenSSL were analysed and splitted into two implementations

while using layered design pattern in the second implementation. In development,

we used the abstraction method to generalise the requirements and develop in Sage-

Math programs while splitted Python programs into modules. In testing, we tested

each component separately in unit testing and combined the whole solution in inte-

gration testing. In presentation, the data collected from the previous steps was very

useful. In report, the academic Latex template was utilised to save time.

43

Chapter 7

Results and evaluation

In this chapter the results of our implementations in the previous chapter will be

presented including the screenshots and outputs from each SageMath and Python

program followed by the Wireshark decrypted message. After that the results will

be evaluated and commented in the aspect of both the product and the process.

7.1 SageMath program results

7.1.1 Basic Dual EC DRBG

Figure 7.1: Basic Dual EC DRBG algorithm result

The result in figure 7.1 shows that basic Dual EC DRBG without additional input

using the standard points P and Q on curve P-256 took approximately 0.05 seconds

to generate 32 bytes of random bits.

7.1.2 Basic Dual EC DRBG backdoor

Figure 7.2: Basic Dual EC DRBG backdoor result

44

7.1. SageMath program results 45

The result in figure 7.2 shows that it took 452 seconds CPU time to recover the

internal state s from the random bits r1 using the backdoor on basic Dual EC DRBG

without additional input with the standard points P and the modified point Q on

curve P-256. Then it spent approximately 0.05 seconds to predict 60 bytes of random

bits which were exactly the same as the following generated random bits r2 and r3.

7.1.3 Dual EC DRBG version 2006

Figure 7.3: Dual EC DRBG version 2006 result

The result in figure 7.3 shows that Dual EC DRBG version 2006 with 32-byte addi-

tional input using the standard points P and Q on curve P-256 took approximately

0.06 seconds CPU time to generate 32 bytes of random bits which means it was 20%

slower than basic Dual EC DRBG without additional input.

7.1.4 Dual EC DRBG version 2006 backdoor

Figure 7.4: Dual EC DRBG version 2006 backdoor result

The result in figure 7.4 shows that Dual EC DRBG version 2006 backdoor with pre-

dicted additional input h adin1 using the standard points P and the modified point

Q on curve P-256 took 638.62 seconds CPU time to recover the internal state from

the random bit output r1. This value varied from 400 to 800 seconds depending on

the missing most significant 2 bytes. It spent additional 0.06 seconds to execute the

Predict Next function and generate 60 bytes of random bits using known additional

input. For this reason the cost of computation was approximately 638.62 seconds

plus 0.06 seconds per each guessing additional input. If the additional input was

unknown, it would take up to 638.62 + (0.06 ∗ 245) seconds. Therefore, it shows that

7.1. SageMath program results 46

the additional input made the attack much more difficult but once it was recovered

the following random bits could be correctly guessed like r2 and r3.

7.1.5 Dual EC DRBG version 2007

Figure 7.5: Dual EC DRBG version 2007 result

The result in figure 7.5 shows that Dual EC DRBG version 2007 with 32-byte addi-

tional input and update step of the internal state using the standard points P and

Q on curve P-256 took approximately 0.07 seconds CPU time to generate 32 bytes

of random bits which means it was 40% slower than basic Dual EC DRBG without

additional input

7.1.6 Dual EC DRBG version 2007 backdoor

Figure 7.6: Dual EC DRBG version 2007 backdoor result

Similar to Dual EC DRBG version 2006 backdoor, the result in figure 7.6 shows that

Dual EC DRBG version 2007 backdoor with predicted additional input h adin2 us-

ing the standard points P and the modified point Q on curve P-256 took 490.20

seconds CPU time to recover the internal state from the random bit output r1. This

value also varied from 400 to 800 seconds depending on the missing most signifi-

cant 2 bytes. However, it spent additional 0.07 seconds CPU time to execute the

Predict Next function and generate 60 bytes of random bits using known additional

input which was 0.01s longer than Dual EC DRBG version 2006 backdoor. For this

reason the cost of computation was approximately 490.20 seconds plus 0.07 seconds

per each guessing additional input. If the additional input was unknown, it would

take up to 490.20 + (0.07 ∗ 245) seconds. Once the additional input was recovered

the following random bits could be correctly guessed like r2 and r3

7.2. TLS attack on OpenSSL results 47

7.2 TLS attack on OpenSSL results

7.2.1 Additional input

Figure 7.7: Additional input file

The result of adin.py program in figure 7.7 shows the text file containing the list of

all possible additional input. In case of the time in seconds, counter and process id

were known, the file would have 1,000,000 records of additional input because the

time in microseconds still had to be guessed and the file size was 33 MB.

7.2.2 Python program results

Figure 7.8: Python program results

The result of main Python program main.py in figure 7.8 output the public content

in the captured TLS packets, current additional input information, internal state,

ECDHE server private key and finally pre-master secret. The process time varied

depending on the number of additional input. In this case with 1,000,000 lines of

additional input, it took 3,745 seconds. In this project, 5 pcapng file (submitted with

the project source code) of captured TLS packets were used in the experiment. The

results were that they took approximately from 600 to 4,000 seconds to complete

the attack process.

7.3. Evaluation 48

Figure 7.9: Pre-master secret file

In addition to the output values, the main Python program also produced the

pre-master secret file as in figure 7.9. This file was used to decrypt TLS packets on

Wireshark in the next step.

7.2.3 Decrypted captured TLS packets

Figure 7.10: Decrypted TLS data

When the pre-master secret file was submitted to Wireshark as in the implementa-

tion and testing chapter the decrypted data was shown as in figure 7.10. It can be

seen that the TLS data could be read in plain text and its content was exactly the

same as the content on the web page.

7.3 Evaluation

The evaluation approach used in this project is simulation under the controlled

methods. From the implementation and testing chapter, OpenSSL, a TLS server,

a client browser, SageMath and Python programs were executed in a simulated

environment to predict how the real environment will interact with the product [19].

7.3. Evaluation 49

Even though, the server, client and attacker machines were simulated in the virtual

machines, the results indicate that the product and the process were sound.

The SageMath programs completely realised how Dual EC DRBG worked on

basic Dual EC DRBG without additional input, Dual EC DRBG version 2006 and

2007 with additional input as in the NIST SP 800-90A standard and figure 3.3

to 3.5 respectively. In general, to generate 32 bytes of random bits it took 0.05

seconds for basic Dual EC DRBG, 0.06 seconds for Dual EC DRBG version 2006

and 0.07 seconds for Dual EC DRBG version 2007. Then the following attack on

each case successfully recovered the internal state and predicted the next random

bits. Even though, the additional input complicated the attack in Dual EC DRBG

version 2006 and 2007. The time spent varied from 400 to 800 seconds to complete

the attack depending on the missing most significant 2 bytes. Overall, the SageMath

programs produced reliable results without error. However the performance was the

only issue when the SageMath programs were executed online but it could be solved

by performing offline computation using locally installed SageMath.

Moving on to attacking TLS on OpenSSL, the results show that the custom

Dual EC DRBG backdoor could be put on the OpenSSL FIPS source code. The

Python programs successfully analysed the captured TLS packets. It followed the

OpenSSL FIPS TLS implementation and the SageMath attack scheme to recover

the internal state, predict the following random bits to find out the ECDHE server

private key and pre-master secret. Although the additional input was used to refresh

the internal state and there was the additional final update step like Dual EC DRBG

version 2007, the process time was still acceptable (600 to 4,000 seconds depending

on the number of possible additional input). Finally the captured TLS packet could

be successfully decrypted to the correct plain text. Like the SageMath programs,

the Python programs always produced the right results and decrypted all captured

TLS packets correctly.

In summary, based on the given criterias [19], the quality of product was out-

standing because it was a research project that not only made a significant contri-

bution to the knowledge of pseudorandom generator and cryptographic backdoors

but also provided the programs for a proof of concept and implemented on a real

product. Besides, the programs were easy to use, stable and robust. As well as

the quality of process, it had a good adherence to a software development process

based on software engineering with a well-designed system architecture and project

management. Importantly, it had a very clear statement of initial problem while

investigating and analysing the previous works. Finally the development of solution

carried out very well and produced the superior application.

Chapter 8

Discussion

In this chapter the achievements of this project will be summarised followed by the

deficiencies and inadequacies of our work which will be proposed in terms of future

work. Furthermore, it is also important to discuss about the countermeasures against

Dual EC DRBG backdoor.

The main achievements of this project are that the motivations were fulfilled

and the contributions were completed. In this project, we studied the elliptic curve

cryptography and TLS handshake protocol in details apart from the lecture. We

understood the mathematics behind Dual EC DRBG and created 6 SageMath pro-

grams to realise and demonstrate a proof of concept of how Dual EC DRBG and its

backdoor work including basic Dual EC DRBG and Dual EC DRBG version 2006

and 2007. Then we moved on to TLS attack on OpenSSL based on the knowledge

from a proof of concept. We analysed and figured out the OpenSSL FIPS source

code, hence, we could insert our own custom backdoor and enable it. After that the

Python programs were created to analyse the captured TLS packets between the

compromised server and the client. Finally the pre-master secret could be recovered

using the secret backdoor value and the captured TLS packets were successfully

decrypted . This report contains complete algorithms in use and steps of implemen-

tations. While the programs were submitted to the SVN link in appendix.

However, there are the deficiencies in the project concerning the other types of

cryptographic backdoors and implementation on other products such as Windows

Schannel, RSA BSAFE and Juniper products which are not included in this project

because of the limitation in time and resources to access those software source code.

While there are the other types of backdoor that are interesting and should be

studied such as Algorithm-Substitution Attacks (ASAs) in the future work section.

50

8.1. Future Work 51

8.1 Future Work

For future work, it is interesting to study about Algorithm-Substitution Attacks

(ASAs) concerning IV replacement attacks in symmetric encryption [20].

Figure 8.1: Basic Dual EC DRBG backdoor result

This is the simplest attack where the IV is replaced by the encryption of key K

under the subversion key K ′. The attacker who controls the subversion key K ′ can

recover key K and finally the message M as in figure 8.1.

Figure 8.2: Basic Dual EC DRBG backdoor result

After study ASAs, we implemented the simplified version in the SageMagth

program Simple CBC DES.sagews and Simple CBC DES ASAs.sagews. The result

in figure 8.2 shows that the fake IV was generated and the attacker could recover

the correct key to decrypt the following message.

8.2 Countermeasures

In addition, we also proposed the countermeasures against Dual EC DRBG back-

door as below.

• Use alternative DRBGs, for example, those which are specified in the NIST

SP 800-90A : Hash DRBG, HMAC DRBG and CTR DRBG

• Verify and update current cryptographic systems

• RSA BSAFE : Do not use the default DRBG

• Windows Schannel : Verify the RNG registry

• OpenSSL : Update to the latest version and perform code review

• Enable TLS session ticket for renegotiation

Chapter 9

Conclusion

Dual EC DRBG is a pseudorandom generator in the FIPS standards. The designer

who picks the curve points P andQ could enable a cryptographic backdoor to predict

all the following randomness. SageMath programs demonstrated a proof of concept

of how Dual EC DRBG works in basic, 2006 and 2007 version. The implementation

of TLS using OpenSSL with a backdoor allowed to learn the ECDHE server private

key, reproduce the TLS pre-master secret and decrypt captured TLS packets.

52

Bibliography

[1] B. Schneier, M. Fredrikson, T. Kohno, and T. Ristenpart. Surreptitiously

Weakening Cryptographic Systems, pages 1-2. Cryptology ePrint Archive, Re-

port 2015/097, 2015.

[2] S. Checkoway, M. Fredrikson, R. Niederhagen, A. Everspaugh, M. Green, T.

Lange, T. Ristenpart, D. J. Bernstein, J. Maskiewicz, and H. Shacham. On

the Practical Exploitability of Dual EC in TLS Implementations, pages 4-11.

In USENIX Security Symposium, 2014.

[3] D. J. Bernstein, T. Lange, and R. Neiderhagen. Dual EC: A Standardized Back

Door, pages 10-14. Cryptology ePrint Archive, No. 2015/767, 2015.

[4] S. Checkoway. A Systematic Analysis of the Juniper Dual EC Incident pages

1-2. Cryptology ePrint Archive, Report 2016/376, 2016.

[5] NIST’s Computer Security Division (CSD). DRBG Validation List.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html, 2016.

[Online; accessed 01-September-2016]

[6] SageMath, Inc. SageMathCloud. https://cloud.sagemath.com/, 2016. [Online;

accessed 01-September-2016]

[7] Certicom. Elliptic Curve Cryptography (ECC). https://www.certicom.com/

ecc. [Online; accessed 01-September-2016]

[8] M. Rouse. What is elliptical curve cryptography (ECC). http://searchsecurity

.techtarget.com/definition/elliptical-curve-cryptography, 2005. [Online; ac-

cessed 01-September-2016]

[9] J. Olenski. ECC 101: What is ECC and why would I want to use

it?. https://www.globalsign.com/en/blog/elliptic-curve-cryptography/, 2015.

[Online; accessed 01-September-2016]

53

Bibliography 54

[10] A. Chambers. Elliptic cryptography. https://plus.maths.org/content/elliptic-

cryptography, 2015. [Online; accessed 01-September-2016]

[11] Microsoft. How TLS/SSL Works. https://technet.microsoft.com/en-

us/library/cc783349(v=ws.10).aspx, 2003. [Online; accessed 01-September-

2016]

[12] Microsoft. TLS Handshake Protocol. https://msdn.microsoft.com/en-

gb/library/windows/desktop/aa380513(v=vs.85).aspx. [Online; accessed

01-September-2016]

[13] E. Barker and J. Kelsey. NIST Special Publication 800-90A.

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf, 2012.

[Online; accessed 01-July-2016]

[14] R. Wells. Product Version Life Cycle. https://community.rsa.com/docs/DOC-

40387, 2016. [Online; accessed 01-September-2016]

[15] OpenSSL Validation Services, Inc. OpenSSL FIPS Object Module v2.0 User

Guide. https://www.openssl.org/docs/fips/UserGuide-2.0.pdf, 2016. [Online;

accessed 01-September-2016]

[16] G. Combs. About Wireshark. https://www.wireshark.org/, 2016. [Online; ac-

cessed 01-September-2016]

[17] KimiNewt. pyshark. https://pypi.python.org/pypi/pyshark, 2015. [Online; ac-

cessed 01-September-2016]

[18] R. S. Pressman. Software engineering: a practitioners approach, pages 39,

223-224, 465-466. McGraw-Hill. ISBN 0-07-365578-3, 2010.

[19] R. Bahsoon. Evaluating Software Products. School of Computer Science, The

University Of Birmingham. https://canvas.bham.ac.uk/courses/16043/files/

3072401/download?wrap=1, 2016. [Online; accessed 11-September-2016]

[20] M. Bellare, K.G. Paterson, P. Rogaway. Security of symmetric encryption

against aass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,

Part I. LNCS, vol. 8616, pp. 119. Springer, Heidelberg, 2014.

Appendix A

SVN project repository

The address of our SVN is https://codex.cs.bham.ac.uk/svn/projects/2015/bxu526/

Contents of the SVN project repository.

1. Programs for TLS attack on OpenSSL

code/adin.py, adin.txt, adin all.txt, cap.py, main.py, premaster.txt, run.sh

code/lib/build.sh, dual ec.c, dual ec.o, libdual ec.so

code/openssl/libcrypto.a, libssl.a

2. OpenSSL with backdoor

openssl-subverted/openssl-fips-2.0.5/fips drbg ec.c, fips drbg selftest.c

3. Captured TLS packets

pcap/cap.pcapng, cap1.pcapng, cap2.pcapng, cap3.pcapng, cap4.pcapng

4. Sagemath Programs

sage/Dual EC DRBG basic.sagews, Dual EC DRBG basic backdoor.sagews,

Dual EC DRBG 2006.sagews, Dual EC DRBG 2006 backdoor.sagews,

Dual EC DRBG 2007.sagews, Dual EC DRBG 2007 backdoor.sagews

Simple CBC DES.sagews and Simple CBC DES ASAs.sagews

5. TLS Server

server/page.html, server ecdsa.sh, server rsa.sh

server/certs/cert.pem, eckey.pn, server.crt, server.key

How to run our software.

1. To run the SageMath programs: ex. sage Dual EC DRBG basic.sagews

2. To start the TLS server: ./server/server ecdsa.sh or ./server/server rsa.sh

3. To execute the packet analyser program: sage -python code/cap.py

4. To perform attack on TLS captured packets: ./code/run.sh

55

	Abstract
	Acknowledgements
	Introduction
	Threat Model and Terminology
	Motivation
	Contribution of the project
	Related work
	Project Outline

	Further background material
	Elliptic curve cryptography
	TLS handshake protocol

	Analysis and Specification
	Dual_EC_DRBG specification
	Dual_EC_DRBG algorithms and backdoor
	Use of Dual_EC_DRBG

	Design
	SageMath programs
	TLS attack on OpenSSL

	Implementation and testing
	SageMath programs
	TLS attack on OpenSSL

	Project management
	Results and evaluation
	SageMath program results
	TLS attack on OpenSSL results
	Evaluation

	Discussion
	Future Work
	Countermeasures

	Conclusion
	Bibliography
	Appendix
	SVN project repository

